PRINT REAL, PRODUCTION-GRADE ABS WITH A 100°C CHAMBER. POWERED BY STRATASYS®.
› Capable of withstanding 15°C higher temperatures than modified desktop 3D printer ABS material formulations
› Powered by Stratasys® SR-30 soluble support material
› Superior Z-layer bonding provides higher strength and better surface finish without warping and curling

MANUFACTURING-READY MATERIALS INCLUDING REAL ABS, PETG, TOUGH, AND MORE.
› Finished part dimensional accuracy of ± 0.2mm (± 0.007in)¹
› Get unrestricted geometric freedom with the METHOD dual extrusion system
› Print complex assemblies with exact tolerances

AN AUTOMATED, TINKER-FREE INDUSTRIAL PRINTING SYSTEM.
› 2x times faster printing than leading desktop 3D printers.²
› 300,000+ total testing hours on 150+ printers (includes full system and sub system testing).³
› Seamless CAD to Part workflow with

¹ Autodesk® Fusion 360®, Autodesk® Inventor, SolidWorks®
COMPARE METHOD MODELS

<table>
<thead>
<tr>
<th>Method</th>
<th>Materials</th>
<th>Support</th>
<th>Chamber Temperature</th>
<th>Build Volume</th>
<th>Dimensional Accuracy</th>
<th>Extruders</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>PLA, PETG, TOUGH</td>
<td>PVA</td>
<td>60°C</td>
<td>Single Extrusion 19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in</td>
<td>± 0.2mm / ±0.007\text{in}</td>
<td>Model Extruder Model 1</td>
<td>Concept</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dual Extrusion 15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.75 in</td>
<td></td>
<td>Support Extruder Support 2</td>
<td>Production</td>
</tr>
<tr>
<td>METHOD X</td>
<td>PLA, PETG, TOUGH</td>
<td>PVA</td>
<td>100°C</td>
<td>Single Extrusion 19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in</td>
<td>± 0.2mm / ±0.007\text{in}</td>
<td>Model Extruder Model 1XA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS</td>
<td>SR-30</td>
<td></td>
<td>Dual Extrusion 15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.75 in</td>
<td></td>
<td>Support Extruder Support 2XA</td>
<td></td>
</tr>
</tbody>
</table>

1 ± 0.2mm or ± 0.002 mm per mm of travel – whichever is greater. Based on internal testing of selected geometries.

2 Compared to popular desktop 3D printers when using the same layer height and infill density settings. Speed advantage dependent upon object geometry and material.

3 Combined total test hours of METHOD and METHOD X (full system and subsystem testing) expected to be completed around shipping of METHOD X.
END-USE PARTS
Get dimensionally accurate, production-grade, real ABS end-use parts at a fraction of traditional manufacturing costs. METHOD reduces costs and saves time for small production manufacturing runs.

MANUFACTURING TOOLS
Create durable, real ABS parts for the production floor. Print dimensionally accurate jigs, fixtures, and end-effectors that fit seamlessly with existing components.

FUNCTIONAL PROTOTYPES
Prototype with production-grade ABS to achieve part properties close to injection molded parts. Print dimensionally accurate assemblies and validate your designs to get your products to market faster—all at a fraction of industrial 3D printing costs.

FEATURES

DUAL PERFORMANCE EXTRUDERS

DRY-SEALED MATERIAL BAYS

100°C CIRCULATING HEATED BUILD CHAMBER

CONNECTIVITY AND 21 ON-BOARD SENSORS

SPECS

DIMENSIONAL ACCURACY
± 0.2mm / ±0.007in

LAYER RESOLUTION
Maximum Capability: 20 - 400 micron

MAXIMUM BUILD VOLUME
Single Extrusion
19 L x 19 W x 19.6 H cm / 7.5 x 7.5 x 7.75 in

Dual Extrusion
15.2 L x 19 W x 19.6 H cm / 6.0 x 7.5 x 7.75 in

EXTRUDERS
Dual Performance Extruders (Model & Support)

MAKERBOT MATERIALS FOR METHOD
ABS, Stratasys® SR-30, PLA, TOUGH, PVA, PETG + more to come

MAKERBOT ABS PRECISION MODEL MATERIAL

TENSILE STRENGTH
43 MPa (12% higher than desktop 3D printer ABS)

TENSILE MODULUS
2400 MPa (26% higher than desktop 3D printer ABS)

HEAT DEFLECTION TEMPERATURE (HDT B - 0.45 MPA)
84°C (15°C higher than desktop 3D printer ABS)

POWER REQUIREMENTS

METHOD
100 - 240 V 3.9A - 1.6A, 50 / 60 Hz
400 W max.

METHOD X
100 - 240 V 8.1A - 3.4A, 50 / 60 Hz
800 W max.